19.1 Clustering Setup
THIS SECTION IS UNDER DEVELOPMENT. PLEASE CHECK BACK LATER
20200902 The R packages used in this chapter include biclust (Kaiser et al. 2023).
# Load required packages from local library into the R session.
library(biclust) # Bicluster analysis.
library(dplyr) # Wrangling: glimpse() group_by() print() select() mutate().
library(rattle) # Weather dataset.
The rattle::weatherAUS dataset is loaded into the template
variable ds
and further template variables are setup as
introduced by Graham J. Williams (2017). See
Chapter 8 for details.
dsname <- "weatherAUS"
ds <- get(dsname)
nobs <- nrow(ds)
vnames <- names(ds)
ds %<>% clean_names(numerals="right")
names(vnames) <- names(ds)
vars <- names(ds)
target <- "rain_tomorrow"
vars <- c(target, vars) %>% unique() %>% rev()
It is always useful to remind ourselves of the dataset with a random sample:
## # A tibble: 226,868 × 7
## date location wind_speed_3pm min_temp humidity_9am evaporation
## <date> <chr> <dbl> <dbl> <int> <dbl>
## 1 2015-03-22 Cobar 11 16.9 56 8.6
## 2 2019-05-15 Bendigo 19 5 97 NA
## 3 2020-02-16 NorahHead 28 20.4 89 NA
## 4 2022-02-08 CoffsHarbour 17 17.3 62 NA
## 5 2013-03-24 Tuggeranong 19 5.4 85 NA
## 6 2019-10-27 Adelaide 15 11.6 58 NA
....
References
Kaiser, Sebastian, Rodrigo Santamaria, Tatsiana Khamiakova, Martin Sill, Roberto Theron, Luis Quintales, Friedrich Leisch, Ewoud De Troyer, and Sami Leon. 2023. Biclust: BiCluster Algorithms.
Williams, Graham J. 2017. The Essentials of Data Science: Knowledge Discovery Using r. The r Series. CRC Press.
Your donation will support ongoing availability and give you access to the PDF version of this book. Desktop Survival Guides include Data Science, GNU/Linux, and MLHub. Books available on Amazon include Data Mining with Rattle and Essentials of Data Science. Popular open source software includes rattle, wajig, and mlhub. Hosted by Togaware, a pioneer of free and open source software since 1984. Copyright © 1995-2022 Graham.Williams@togaware.com Creative Commons Attribution-ShareAlike 4.0