References

Aragon, Tomas J. 2020. Epitools: Epidemiology Tools. https://CRAN.R-project.org/package=epitools.
Bache, Stefan Milton, and Hadley Wickham. 2020. Magrittr: A Forward-Pipe Operator for r. https://CRAN.R-project.org/package=magrittr.
Bilisoly, Roger. 2008. Practical Text Mining with Perl. Wiley Series on Methods and Applications in Data Mining. Wiley. http://books.google.com.au/books?id=YkMFVbsrdzkC.
Breiman, Leo, Adele Cutler, Andy Liaw, and Matthew Wiener. 2018. randomForest: Breiman and Cutler’s Random Forests for Classification and Regression. https://www.stat.berkeley.edu/~breiman/RandomForests/.
Dragulescu, Adrian, and Cole Arendt. 2020. Xlsx: Read, Write, Format Excel 2007 and Excel 97/2000/XP/2003 Files. https://github.com/colearendt/xlsx.
Durant, Will. 1926. The Story of Philosophy. 2012th ed. Simon; Schuster.
Feinerer, Ingo, and Kurt Hornik. 2020. Tm: Text Mining Package. http://tm.r-forge.r-project.org/.
Fellows, Ian. 2018. Wordcloud: Word Clouds. https://CRAN.R-project.org/package=wordcloud.
Firke, Sam. 2021. Janitor: Simple Tools for Examining and Cleaning Dirty Data. https://github.com/sfirke/janitor.
Gagolewski, Marek, Bartek Tartanus, and other contributors; IBM, Unicode, Inc., other contributors; Unicode, and Inc. 2020. Stringi: Character String Processing Facilities. https://CRAN.R-project.org/package=stringi.
Hansen, Kasper Daniel, Jeff Gentry, Li Long, Robert Gentleman, Seth Falcon, Florian Hahne, and Deepayan Sarkar. 2018. Rgraphviz: Provides Plotting Capabilities for r Graph Objects.
Hester, Jim. 2020. Glue: Interpreted String Literals. https://CRAN.R-project.org/package=glue.
Hornik, Kurt. 2020. RWeka: R/Weka Interface. https://CRAN.R-project.org/package=RWeka.
Hothorn, Torsten, Kurt Hornik, Carolin Strobl, and Achim Zeileis. 2021. Party: A Laboratory for Recursive Partytioning. http://party.R-forge.R-project.org.
Hothorn, Torsten, and Achim Zeileis. 2021. Partykit: A Toolkit for Recursive Partytioning. http://partykit.r-forge.r-project.org/partykit/.
Kaiser, Sebastian, Rodrigo Santamaria, Tatsiana Khamiakova, Martin Sill, Roberto Theron, Luis Quintales, Friedrich Leisch, and Ewoud De Troyer. 2020. Biclust: BiCluster Algorithms. https://CRAN.R-project.org/package=biclust.
Keitt, Tim. 2012. colorRamps: Builds Color Tables. https://CRAN.R-project.org/package=colorRamps.
Kuhn, Max, and Ross Quinlan. 2020. C50: C5.0 Decision Trees and Rule-Based Models. https://topepo.github.io/C5.0.
Liu, Zhongxin, Xin Xia, Christoph Treude, David Lo, and Shanping Li. 2019. “Automatic Generation of Pull Request Descriptions.” 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), November. https://doi.org/10.1109/ase.2019.00026.
Milborrow, Stephen. 2020. Rpart.plot: Plot Rpart Models: An Enhanced Version of Plot.rpart. http://www.milbo.org/rpart-plot/index.html.
Neuwirth, Erich. 2014. RColorBrewer: ColorBrewer Palettes. https://CRAN.R-project.org/package=RColorBrewer.
Ooms, Jeroen. 2020. Writexl: Export Data Frames to Excel Xlsx Format. https://CRAN.R-project.org/package=writexl.
Qin, D., X. Zhou, L. Chen, G. Huang, and Y. Zhang. 2020. “Dynamic Connection-Based Social Group Recommendation.” IEEE Transactions on Knowledge and Data Engineering 32 (3): 453–67.
R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Rinker, Tyler. 2018a. qdapDictionaries: Dictionaries and Word Lists for the Qdap Package. http://trinker.github.com/qdapDictionaries/.
———. 2018b. Wakefield: Generate Random Data Sets. https://github.com/trinker/wakefield.
———. 2020. Qdap: Bridging the Gap Between Qualitative Data and Quantitative Analysis. http://trinker.github.io/qdap/.
Ripley, Brian. 2021. Nnet: Feed-Forward Neural Networks and Multinomial Log-Linear Models. http://www.stats.ox.ac.uk/pub/MASS4/.
Romanski, Piotr, and Lars Kotthoff. 2018. FSelector: Selecting Attributes. https://CRAN.R-project.org/package=FSelector.
Sarkar, Deepayan. 2020. Lattice: Trellis Graphics for r. http://lattice.r-forge.r-project.org/.
Schloerke, Barret, Di Cook, Joseph Larmarange, Francois Briatte, Moritz Marbach, Edwin Thoen, Amos Elberg, and Jason Crowley. 2021. GGally: Extension to Ggplot2. https://CRAN.R-project.org/package=GGally.
Sing, Tobias, Oliver Sander, Niko Beerenwinkel, and Thomas Lengauer. 2020. ROCR: Visualizing the Performance of Scoring Classifiers. http://ipa-tys.github.io/ROCR/.
Spinu, Vitalie, Garrett Grolemund, and Hadley Wickham. 2021. Lubridate: Make Dealing with Dates a Little Easier. https://CRAN.R-project.org/package=lubridate.
Therneau, Terry, and Beth Atkinson. 2019. Rpart: Recursive Partitioning and Regression Trees. https://CRAN.R-project.org/package=rpart.
Velten, Kai. 2009. Mathematical Modeling and Simulation. Wiley.
Wickham, Hadley. 2014. Advanced R. Chapman & Hall/CRC the r Series. Chapman & Hall.
———. 2019a. Lobstr: Visualize r Data Structures with Trees. https://github.com/r-lib/lobstr.
———. 2019b. Stringr: Simple, Consistent Wrappers for Common String Operations. https://CRAN.R-project.org/package=stringr.
———. 2021. Tidyr: Tidy Messy Data. https://CRAN.R-project.org/package=tidyr.
Wickham, Hadley, and Jennifer Bryan. 2019. Readxl: Read Excel Files. https://CRAN.R-project.org/package=readxl.
Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi, Claus Wilke, Kara Woo, Hiroaki Yutani, and Dewey Dunnington. 2020. Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. https://CRAN.R-project.org/package=ggplot2.
Wickham, Hadley, Romain François, Lionel Henry, and Kirill Müller. 2021. Dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.
Wickham, Hadley, and Jim Hester. 2020. Readr: Read Rectangular Text Data. https://CRAN.R-project.org/package=readr.
Wickham, Hadley, and Dana Seidel. 2020. Scales: Scale Functions for Visualization. https://CRAN.R-project.org/package=scales.
Williams, Graham. 2021. Rattle: Graphical User Interface for Data Science in r. https://rattle.togaware.com/.
Williams, Graham J. 2011. Data Mining with Rattle and R: The Art of Excavating Data for Knowledge Discovery. Use R! New York: Springer.
Williams, Graham J. 2017. The Essentials of Data Science: Knowledge Discovery Using r. The r Series. CRC Press.


Your donation will support ongoing development and give you access to the PDF version of the book. Desktop Survival Guides include Data Science, GNU/Linux, and MLHub. Books available on Amazon include Data Mining with Rattle and Essentials of Data Science. Popular open source software includes rattle, wajig, and mlhub. Hosted by Togaware, a pioneer of free and open source software since 1984.
Copyright © 1995-2021 Graham.Williams@togaware.com Creative Commons Attribution-ShareAlike 4.0.