Go to TogaWare.com Home Page. Data Science Desktop Survival Guide
by Graham Williams
Duck Duck Go



CLICK HERE TO VISIT THE UPDATED SURVIVAL GUIDE

Index



( (base) : 11.55
+ (base) : 5.6 | 25.10
-$>$ (base) : 5.2
-$>$ (base) : 25.16
$<$- (base) : 5.2
$<$- (base) : 5.18
$<$- (base) : 11.17
$<$- (base) : 25.16
%$>$% (tidyr) : 5.7
%$>$% (tidyr) : 5.10
%$<$$>$% (magrittr) : 5.12
%$<$$>$% (magrittr) : 11.3
%$<$$>$% (magrittr) : 11.13
%$>$% (tidyr) : 12.36
%$>$% (tidyr) : 25.10
%s+% (stringi) : 7.3 | 11.47
%T$>$% (magrittr) : 5.14
file= : 8.2
col\_names= : 8.2
col\_types= : 8.3
skip= : 8.4
sheet= : 8.4
sheet= : 8.4
range= : 8.4
numerals= : 11.13
x= : 12.3
labels= : 12.3
x= : 12.3
y= : 12.3
width= : 12.6
colour= : 12.9
fill= : 12.9
= (base) : 25.16
? (utils) : 4.11
abs() (base) : 10.5
across() (dplyr) : 11.10 | 11.15
add a row to a dataset : 11.6
add_count() (dplyr) : 11.5
aes() (ggplot2) : 12.3 | 12.36
aes_string() (ggplot2) : 11.52
all_of() (tidyselect) : 14.4
any() (base) : 10.7
arrange() (dplyr) : 10.5
as.factor() (base) : 11.52
as_tibble() (dplyr) : 10.5
asRules() (rattle) : 20.27
assign() (base) : 5.15
assignment : 5.2
assignment pipe : see %<>% | see %<>%
attr() (base) : 14.10
base (package)
( : 11.55
+ : 5.6 | 25.10
-$>$ : 5.2
-$>$ : 25.16
$<$- : 5.2
$<$- : 5.18
$<$- : 11.17
$<$- : 25.16
= : 25.16
abs() : 10.5
any() : 10.7
as.factor() : 11.52
assign() : 5.15
attr() : 14.10
casefold() : 7.2
cat() : 7.3 | 7.4
class() : 11.30
data.frame() : 10.5
dim() : 5.12
factor() : 11.31 | 11.35 | 11.36
format() : 24.10
function() : 14.8
get() : 11.21 | 11.21
globalenv() : 5.15
grep() : 7.9 | 8.8
is.na() : 5.17 | 10.7 | 11.10 | 14.9
is.numeric() : 9.5 | 11.15
library() : 4.4 | 4.8 | 4.8 | 4.9 | 4.10 | 4.11 | 5.4 | 5.4 | 5.4
load() : 11.55 | 11.55 | 11.55 | 11.55 | 11.55
mean() : 24.9
names() : 11.14 | 11.24 | 11.53
nchar() : 7.7
nrow() : 10.7
paste() : 7.3 | 7.4 | 24.17
print() : 5.4 | 5.14 | 5.14 | 5.18 | 14.4 | 14.4
print.data.frame() : 5.1
readLines() : 8.8
return() : 25.12
rev() : 9.9 | 12.18
round() : 14.8
sapply() : 11.36 | 11.42 | 11.53
save() : 11.55
search() : 4.8 | 4.9
set.seed() : 9.11 | 10.3 | 24.11
sort() : 12.18
substr() : 7.12
substring() : 7.12
sum() : 5.5
summary() : 5.8 | 5.8 | 5.9 | 5.9 | 5.14 | 11.37
Sys.time() : 24.17
system.file() : 11.17
table() : 11.34 | 11.36 | 11.36
tolower() : 7.2
toupper() : 7.2
unique() : 11.9 | 11.32 | 12.18
which() : 9.5
with() : 5.13
bind list to a dataset : 11.6
bind rows : 11.6
bind_rows() (dplyr) : 11.6 | 11.6
blue2green2red() (colorRamps) : 12.12
brewer.pal() (RColorBrewer) : 12.12
case : 5.3
case_when() (dplyr) : 5.3
casefold() (base) : 7.2
cat() (base) : 7.3 | 7.4
categoric : see factor
cfs() (FSelector) : 11.47 | 11.47
class() (base) : 11.30
classification
neural networks : 18.13
clean_names() (janitor) : 11.8 | 11.13
clipboard() (readr) : 8.2
cm.colors() (grDevices) : 12.12
colorRamps (package)
blue2green2red() : 12.12
colors.plot() (epitools) : 12.11
colours() (grDevices) : 12.11
combine rows : 11.6
comma() (scales) : 7.5 | 10.7 | 12.20 | 12.22
contains() (tidyselect) : 11.34
cor() (stats) : 5.13 | 10.5
count() (dplyr) : 10.2
csv (file type) : 8.3 | 8.3
CSV file : 11.17 | 11.17
data frame : 5.1
data.frame() (base) : 10.5
data.table (package)
na.omit() : 10.5 | 11.50
dataset : 5.1
dev.off() (grDevices) : 12.35
dim() (base) : 5.12
dollar() (scales) : 12.23
dplyr (package)
across() : 11.10 | 11.15
add_count() : 11.5
arrange() : 10.5
as_tibble() : 10.5
bind_rows() : 11.6 | 11.6
case_when() : 5.3
count() : 10.2
filter() : 10.7 | 10.7 | 11.10 | 11.10
glimpse() : 4.7 | 4.7 | 9.2 | 9.13 | 11.20 | 11.27 | 14.3
mutate() : 10.5 | 10.5 | 11.3 | 11.3 | 11.8 | 12.18 | 12.18
pull() : 11.9
rename() : 11.14 | 11.14
rename_with() : 11.13
sample_frac() : 10.3 | 10.8 | 11.3 | 12.24
sample_n() : 5.1 | 11.29 | 12.38
select() : 5.1 | 5.7 | 5.7 | 5.8 | 5.10 | 5.12 | 5.14 | 10.5 | 10.6 | 11.3 | 11.34 | 11.36 | 14.4
slice() : 11.16 | 14.4
tibble() : 24.11
egyptian brackets : 25.7
element_blank() (ggplot2) : 12.24
element_text() (ggplot2) : 12.13
epitools (package)
colors.plot() : 12.11
everything() (tidyselect) : 11.10
excel_format() (readxl) : 8.4
excel_sheets() (readxl) : 8.4
exposition pipe
see(pipe) : 5.13
extract2() (magrittr) : 14.10
factor() (base) : 11.31 | 11.35 | 11.36
fancyRpartPlot() (rattle) : 20.32
file types
csv : 8.3 | 8.3
filter() (dplyr) : 10.7 | 10.7 | 11.10 | 11.10
filter() (stats) : 5.8 | 5.12 | 5.17 | 5.17
format() (base) : 24.10
formula() (stats) : 9.4 | 9.9
forward assignment : 5.2
FSelector (package)
cfs() : 11.47 | 11.47
information.gain() : 11.47 | 11.47
function : 5.5
function() (base) : 14.8
gather() (tidyr) : 10.5
generic variable : 11.21 | 11.21 | 11.21 | 11.21
geom_bar() (ggplot2) : 11.52 | 12.3 | 12.3 | 12.4 | 12.7
geom_col() (ggplot2) : 12.7 | 12.8
geom_density() (ggplot2) : 5.17 | 12.27
geom_line() (ggplot2) : 12.14 | 12.26
geom_point() (ggplot2) : 12.13 | 12.14 | 12.36 | 12.38 | 12.39
geom_smooth() (ggplot2) : 12.39 | 12.40
get() (base) : 11.21 | 11.21
ggplot() (ggplot2) : 5.17 | 11.52 | 12.3 | 12.7 | 12.7 | 12.18 | 12.38 | 24.19 | 25.11
ggplot2 (package)
aes() : 12.3 | 12.36
aes_string() : 11.52
element_blank() : 12.24
element_text() : 12.13
geom_bar() : 11.52 | 12.3 | 12.3 | 12.4 | 12.7
geom_col() : 12.7 | 12.8
geom_density() : 5.17 | 12.27
geom_line() : 12.14 | 12.26
geom_point() : 12.13 | 12.14 | 12.36 | 12.38 | 12.39
geom_smooth() : 12.39 | 12.40
ggplot() : 5.17 | 11.52 | 12.3 | 12.7 | 12.7 | 12.18 | 12.38 | 24.19 | 25.11
ggsave() : 12.35
labeller() : 12.15
labs() : 5.17 | 12.3 | 12.21 | 12.38
qplot() : 4.4 | 4.6 | 4.6
scale_colour_brewer() : 12.38
scale_x_reverse() : 12.18
scale_y_continuous() : 12.3
scale_y_reverse() : 12.18
theme() : 12.4 | 12.24 | 12.25
xlab() : 12.21
ylab() : 12.21
ggsave() (ggplot2) : 12.35
glimpse() (dplyr) : 4.7 | 4.7 | 9.2 | 9.13 | 11.20 | 11.27 | 14.3
glimpse() (tibble) : 4.9
globalenv() (base) : 5.15
glue (package)
glue() : 7.3 | 7.5
glue_data() : 7.6
glue() (glue) : 7.3 | 7.5
glue_data() (glue) : 7.6
graphics (package)
image() : 12.12
gray() (grDevices) : 12.12
grDevices (package)
cm.colors() : 12.12
colours() : 12.11
dev.off() : 12.35
gray() : 12.12
palette() : 12.12
pdf() : 12.35 | 24.20
rainbow() : 12.12
grep() (base) : 7.9 | 8.8
head() (utils) : 8.8 | 11.28 | 24.9
heuristic search : 9.11
Hmisc (package)
latexTranslate() : 24.10
IDE : 4.1
identity : 5.10
image() (graphics) : 12.12
information.gain() (FSelector) : 11.47 | 11.47
install.packages() (utils) : 4.4 | 4.6 | 4.10 | 7.1 | 8.1 | 9.1 | 10.1 | 11.1 | 12.1 | 14.1 | 15.1 | 18.1 | 20.1 | 21.1 | 22.1 | 23.1 | 24.1
ipred (package)
print() : 25.11
is.na() (base) : 5.17 | 10.7 | 11.10 | 14.9
is.numeric() (base) : 9.5 | 11.15
janitor (package)
clean_names() : 11.8 | 11.13
JPG : 12
kable() (knitr) : 24.11 | 24.13 | 24.14 | 24.14 | 24.15
knitr (package)
kable() : 24.11 | 24.13 | 24.14 | 24.14 | 24.15
labeller() (ggplot2) : 12.15
labs() (ggplot2) : 5.17 | 12.3 | 12.21 | 12.38
latexTranslate() (Hmisc) : 24.10
library() (base) : 4.4 | 4.8 | 4.8 | 4.9 | 4.10 | 4.11 | 5.4 | 5.4 | 5.4
load() (base) : 11.55 | 11.55 | 11.55 | 11.55 | 11.55
lobstr (package)
ref() : 11.22
lubridate (package)
union() : 11.42
magrittr (package)
%$<$$>$% : 5.12
%$<$$>$% : 11.3
%$<$$>$% : 11.13
%T$>$% : 5.14
extract2() : 14.10
not() : 5.17
set_colnames() : 10.5
map() (purrr) : 9.5
mean() (base) : 24.9
memory usage : 11.21
missing value
imputation : 11.11
replace : 11.15
modeltools (package)
subset() : 24.19
mutate() (dplyr) : 10.5 | 10.5 | 11.3 | 11.3 | 11.8 | 12.18 | 12.18
mutate() (plyr) : 25.15
na
replace : 11.15
na.omit() (data.table) : 10.5 | 11.50
na.roughfix() (randomForest) : 9.10 | 11.11 | 11.38 | 11.49 | 12.1
names() (base) : 11.14 | 11.24 | 11.53
nchar() (base) : 7.7
neural networks : 18.13
normVarNames() (rattle) : 9.3 | 11.13 | 11.13
not() (magrittr) : 5.17
nrow() (base) : 10.7
palette() (grDevices) : 12.12
parse_number() (readr) : 11.8 | 11.8 | 11.8
paste() (base) : 7.3 | 7.4 | 24.17
PDF : 12
pdf() (grDevices) : 12.35 | 24.20
performance() (ROCR) : 14.10 | 14.10
pipe
exposition : 5.13
tee : 5.14 | 5.15
plyr (package)
mutate() : 25.15
pmap_lgl() (purrr) : 10.7
PNG : 12
PostScript : 12
predict() (stats) : 14.5 | 14.5 | 14.6 | 14.10
prediction() (ROCR) : 14.10 | 14.10
print() (base) : 5.4 | 5.14 | 5.14 | 5.18 | 14.4 | 14.4
print() (ipred) : 25.11
print.data.frame() (base) : 5.1
print.xtable() (xtable) : 24.14 | 24.14
prp() (rpart.plot) : 20.32 | 20.32
pull() (dplyr) : 11.9
purrr (package)
map() : 9.5
pmap_lgl() : 10.7
qplot() (ggplot2) : 4.4 | 4.6 | 4.6
R script file : 4.10
r_data_frame() (wakefield) : 8.7
rainbow() (grDevices) : 12.12
randomForest (package)
na.roughfix() : 9.10 | 11.11 | 11.38 | 11.49 | 12.1
randomForest() : 11.49 | 14.12
randomForest() (randomForest) : 11.49 | 14.12
rattle (package)
asRules() : 20.27
fancyRpartPlot() : 20.32
normVarNames() : 9.3 | 11.13 | 11.13
riskchart() : 14.11
weather : 11.18 | 11.18
weatherAUS : 4.4 | 4.4 | 4.7 | 5 | 5.7 | 5.8 | 5.17 | 7.1 | 7.5 | 8.1 | 8.5 | 9.1 | 10.1 | 11.1 | 11.17 | 12.1 | 12.37 | 14.1 | 14.2 | 15.1 | 18.2 | 18.2 | 19.1 | 20.1 | 20.2 | 21.1 | 22.1 | 23.1 | 24.1
RColorBrewer (package)
brewer.pal() : 12.12
read.csv() (utils) : 11.55
read.table() (utils) : 8.2
read_csv() (readr) : 8.2 | 8.3 | 11.8 | 11.18 | 11.18 | 11.18 | 11.18
read_excel() (readxl) : 8.4
read_tsv() (readr) : 8.9
readLines() (base) : 8.8
readr (package)
clipboard() : 8.2
parse_number() : 11.8 | 11.8 | 11.8
read_csv() : 8.2 | 8.3 | 11.8 | 11.18 | 11.18 | 11.18 | 11.18
read_tsv() : 8.9
write_csv() : 8.3 | 8.9
readxl (package)
excel_format() : 8.4
excel_sheets() : 8.4
read_excel() : 8.4
ref() (lobstr) : 11.22
regression
neural networks : 18.13
rename() (dplyr) : 11.14 | 11.14
rename_with() (dplyr) : 11.13
replace_na() (tidyr) : 11.15
return() (base) : 25.12
rev() (base) : 9.9 | 12.18
risk variable : 11.40
riskchart() (rattle) : 14.11
ROCR (package)
performance() : 14.10 | 14.10
prediction() : 14.10 | 14.10
round() (base) : 14.8
rpart (package)
rpart() : 11.49 | 14.4 | 14.4 | 18.6 | 20.17 | 20.17
rpart() (rpart) : 11.49 | 14.4 | 14.4 | 18.6 | 20.17 | 20.17
rpart.plot (package)
prp() : 20.32 | 20.32
rpart.rules() : 20.28
rpart.rules() (rpart.plot) : 20.28
RStudio : 4.1
runif() (stats) : 24.9
sample_frac() (dplyr) : 10.3 | 10.8 | 11.3 | 12.24
sample_n() (dplyr) : 5.1 | 11.29 | 12.38
sapply() (base) : 11.36 | 11.42 | 11.53
save() (base) : 11.55
scale_colour_brewer() (ggplot2) : 12.38
scale_x_reverse() (ggplot2) : 12.18
scale_y_continuous() (ggplot2) : 12.3
scale_y_reverse() (ggplot2) : 12.18
scales (package)
comma() : 7.5 | 10.7 | 12.20 | 12.22
dollar() : 12.23
search() (base) : 4.8 | 4.9
select rows : 10.7
select rows with missing values : 10.7
select() (dplyr) : 5.1 | 5.7 | 5.7 | 5.8 | 5.10 | 5.12 | 5.14 | 10.5 | 10.6 | 11.3 | 11.34 | 11.36 | 14.4
set.seed() (base) : 9.11 | 10.3 | 24.11
set_colnames() (magrittr) : 10.5
slice() (dplyr) : 11.16 | 14.4
sort() (base) : 12.18
stats (package)
cor() : 5.13 | 10.5
filter() : 5.8 | 5.12 | 5.17 | 5.17
formula() : 9.4 | 9.9
predict() : 14.5 | 14.5 | 14.6 | 14.10
runif() : 24.9
str_c() (stringr) : 7.3
str_length() (stringr) : 7.7
str_pad() (stringr) : 7.14
str_replace() (stringr) : 11.26 | 11.26 | 24.12
str_replace_all() (stringr) : 12.15
str_sub() (stringr) : 7.12 | 7.13
str_trim() (stringr) : 7.14
str_wrap() (stringr) : 7.15
stri_rand_lipsum() (stringi) : 7.8
stringi (package)
%s+% : 7.3 | 11.47
stri_rand_lipsum() : 7.8
stringr (package)
str_c() : 7.3
str_length() : 7.7
str_pad() : 7.14
str_replace() : 11.26 | 11.26 | 24.12
str_replace_all() : 12.15
str_sub() : 7.12 | 7.13
str_trim() : 7.14
str_wrap() : 7.15
word() : 7.15
subset() (modeltools) : 24.19
substr() (base) : 7.12
substring() (base) : 7.12
sum() (base) : 5.5
summary() (base) : 5.8 | 5.8 | 5.9 | 5.9 | 5.14 | 11.37
switch : 5.3
Sys.time() (base) : 24.17
system.file() (base) : 11.17
table() (base) : 11.34 | 11.36 | 11.36
tail() (utils) : 11.28
target variable : 11.39
tee pipe
see(pipe) : 5.14
template : 11.21 | 11.21
template variable : 11.21
theme() (ggplot2) : 12.4 | 12.24 | 12.25
tibble (package)
glimpse() : 4.9
tibble() (dplyr) : 24.11
tidyr (package)
%$>$% : 5.7
%$>$% : 5.10
%$>$% : 12.36
%$>$% : 25.10
gather() : 10.5
replace_na() : 11.15
tidyselect (package)
all_of() : 14.4
contains() : 11.34
everything() : 11.10
where() : 11.15
tolower() (base) : 7.2
toupper() (base) : 7.2
training dataset : 11.39
union() (lubridate) : 11.42
unique() (base) : 11.9 | 11.32 | 12.18
utils (package)
? : 4.11
head() : 8.8 | 11.28 | 24.9
install.packages() : 4.4 | 4.6 | 4.10 | 7.1 | 8.1 | 9.1 | 10.1 | 11.1 | 12.1 | 14.1 | 15.1 | 18.1 | 20.1 | 21.1 | 22.1 | 23.1 | 24.1
read.csv() : 11.55
read.table() : 8.2
tail() : 11.28
wakefield (package)
r_data_frame() : 8.7
weather (rattle) : 11.18 | 11.18
weatherAUS (rattle) : 4.4 | 4.4 | 4.7 | 5 | 5.7 | 5.8 | 5.17 | 7.1 | 7.5 | 8.1 | 8.5 | 9.1 | 10.1 | 11.1 | 11.17 | 12.1 | 12.37 | 14.1 | 14.2 | 15.1 | 18.2 | 18.2 | 19.1 | 20.1 | 20.2 | 21.1 | 22.1 | 23.1 | 24.1
where() (tidyselect) : 11.15
which() (base) : 9.5
with() (base) : 5.13
word() (stringr) : 7.15
write_csv() (readr) : 8.3 | 8.9
write_xlsx() (writexl) : 8.5
writexl (package)
write_xlsx() : 8.5
xlab() (ggplot2) : 12.21
xtable (package)
print.xtable() : 24.14 | 24.14
xtable() : 24.14 | 24.16
xtable() (xtable) : 24.14 | 24.16
ylab() (ggplot2) : 12.21


Support further development by purchasing the PDF version of the book.
Other online resources include the GNU/Linux Desktop Survival Guide.
Books available on Amazon include Data Mining with Rattle and Essentials of Data Science.
Popular open source software includes rattle and wajig.
Hosted by Togaware, a pioneer of free and open source software since 1984.
Copyright © 2000-2020 Togaware Pty Ltd. . Creative Commons ShareAlike V4.