Data Science Desktop Survival Guide
by Graham Williams |
|||||
KnitR Setup |
20200602
Packages used in this chapter include diagram, dplyr, ggplot2, magrittr, xtable, Hmisc, and rattle.
Packages are loaded into the currently running R session from your
local library directories on disk. Missing packages can be installed
using utils::install.packages() within R. On Ubuntu, for
example, R packages can be installed using
wajig install r-cran-<pkgname>
.
# Load required packages from local library into the R session.
library(rattle) # Dataset: weatherAUS. library(magrittr) # Data pipelines: %>% %T>% %<>%. library(ggplot2) # Visualise data. library(xtable) # Format R data frames as LaTeX tables. library(Hmisc) # Escape special LaTeX charaters. library(diagram) # Produce a flowchart. library(dplyr) # Data wrangling. library(scales)
The rattle::weatherAUS dataset is loaded into the template variable ds and further template variables are setup as introduced in Williams (2017). See Chapter 7 for details.
|
dsname <- "weatherAUS"
ds <- get(dsname) nobs <- nrow(ds) vnames <- names(ds) ds %<>% clean_names(numerals="right") names(vnames) <- names(ds) vars <- names(ds) target <- "rain_tomorrow" vars <- c(target, vars) %>% unique() %>% rev()
A random sample of the dataset:
|
ds %>% sample_frac()
|