Data Science Desktop Survival Guide
by Graham Williams |
|||||
Clustering Setup |
20200902 Packages used in this chapter include biclust.
# Load required packages from local library into the R session.
library(biclust) # Bicluster analysis. library(dplyr) # Wrangling: glimpse() group_by() print() select() mutate(). library(rattle) # Weather dataset.
The rattle::weatherAUS dataset is loaded into the template variable ds and further template variables are setup as introduced in Williams (2017). See Chapter 7 for details.
|
dsname <- "weatherAUS"
ds <- get(dsname) nobs <- nrow(ds) vnames <- names(ds) ds %<>% clean_names(numerals="right") names(vnames) <- names(ds) vars <- names(ds) target <- "rain_tomorrow" vars <- c(target, vars) %>% unique() %>% rev()
It is always useful to remind ourselves of the dataset with a random sample:
|
ds %>% sample_frac() %>% select(date, location, sample(3:length(vars), 5))
|