Go to TogaWare.com Home Page. Data Science Desktop Survival Guide
by Graham Williams
Duck Duck Go



CLICK HERE TO VISIT THE UPDATED SURVIVAL GUIDE

Dealing with Correlations

20180726 From the final result we can identify pairs of variables where we might want to keep one but not the other variable because they are highly correlated. We will select them manually since it is a judgement call. Normally we might limit the removals to those correlations that are 0.90 or more. In our case here the three pairs of highly correlated variables make intuitive sense.

# Note the correlated variables that are redundant.

correlated <- c("temp_3pm", "pressure_3pm", "temp_9am")

# Add them to the variables to be ignored for modelling.

ignore <- union(ignore, correlated) %T>% print()
## [1] "date"         "location"     "risk_mm"      "temp_3pm"     "pressur...
## [6] "temp_9am"


Support further development by purchasing the PDF version of the book.
Other online resources include the GNU/Linux Desktop Survival Guide.
Books available on Amazon include Data Mining with Rattle and Essentials of Data Science.
Popular open source software includes rattle and wajig.
Hosted by Togaware, a pioneer of free and open source software since 1984.
Copyright © 2000-2020 Togaware Pty Ltd. . Creative Commons ShareAlike V4.