The required packages for this chapter include:

<table>
<thead>
<tr>
<th>Package</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>library(rattle)</td>
<td><code>weather</code> and <code>normVarNames()</code></td>
</tr>
<tr>
<td>library(randomForest)</td>
<td><code>na.roughfix()</code></td>
</tr>
<tr>
<td>library(e1071)</td>
<td><code>naiveBayes()</code></td>
</tr>
<tr>
<td>library(ROCR)</td>
<td><code>prediction()</code></td>
</tr>
</tbody>
</table>

As we work through this chapter, new R commands will be introduced. Be sure to review the command’s documentation and understand what the command does. You can ask for help using the `?` command as in:

```
?read.csv
```

We can obtain documentation on a particular package using the `help=` option of `library()`:

```
library(help=rattle)
```

This chapter is intended to be hands on. To learn effectively, you are encouraged to have R running (e.g., RStudio) and to run all the commands as they appear here. Check that you get the same output, and you understand the output. Try some variations. Explore.
1 Prepare Weather Data for Modelling

See Chapters on Data and Model for the template for preparing data and building models. We repeat the setup here with little comment, except to note that we use the \texttt{weather} dataset from \texttt{rattle} (Williams, 2014).

```r
library(rattle)  # Normalise names \texttt{normVarNames()} and \texttt{weather} dataset.
library(randomForest)  # Impute missing using \texttt{na.roughfix()}.

dname <- "weather"
ds <- get(dname)
names(ds) <- normVarNames(names(ds))
vars <- names(ds)
target <- "rain_tomorrow"
risk <- "risk_mm"
id <- c("date", "location")
ignore <- union(id, if (exists("risk")) risk)
vars <- setdiff(vars, ignore)
inputs <- setdiff(vars, target)
umi <- which(sapply(ds[inputs], is.numeric))
numc <- names(numi)
cati <- which(sapply(ds[inputs], is.factor))
catc <- names(cati)
ds[numc] <- na.roughfix(ds[numc])  # Impute missing values, roughly.
ds[target] <- as.factor(ds[[target]])  # Ensure the target is categoric.
nobs <- nrow(ds)
form <- formula(paste(target, "~ ."))
set.seed(42)
train <- sample(nobs, 0.7*nobs)
test <- setdiff(seq_len(nobs), train)
actual <- ds[test, target]
risks <- ds[test, risk]
```
2 Review the Dataset

It is always a good idea to review the data.

```r
dim(ds)
## [1] 366 24

names(ds)
## [1] "date"       "location"   "min_temp"
## [4] "max_temp"   "rainfall"    "evaporation"
## [7] "sunshine"   "wind_gust_dir" "wind_gust_speed"
## [10] "wind_dir_9am" "wind_dir_3pm" "wind_speed_9am"
## [13] "wind_speed_3pm" "humidity_9am" "humidity_3pm"

head(ds)
## date location min_temp max_temp rainfall evaporation sunshine
## 1 2007-11-01 Canberra     8.0     24.3    0.0       3.4       6.3
## 2 2007-11-02 Canberra     14.0    26.9    3.6       4.4       9.7
## 3 2007-11-03 Canberra    13.7     23.4    3.6       5.8       3.3
## 4 2007-11-04 Canberra    13.3     15.5    39.8      7.2       9.1

tail(ds)
## date location min_temp max_temp rainfall evaporation sunshine
## 361 2008-10-26 Canberra     7.9     26.1    0.0       6.8       3.5
## 362 2008-10-27 Canberra     9.0     30.7    0.0       7.6      12.1
## 363 2008-10-28 Canberra     7.1     28.4    0.0      11.6      12.7
## 364 2008-10-29 Canberra    12.5     19.9    0.0       8.4       5.3

str(ds)
## 'data.frame': 366 obs. of 24 variables:
## $ date       : Date, format: "2007-11-01" "2007-11-02" ...
## $ location   : Factor w/ 49 levels "Adelaide","Albany",...
## $ min_temp   : num 8 14 13 13.3 7.6 6.2 6.1 8.3 8.8 8.4 ...
## $ max_temp   : num 24.3 26.9 23.4 15.5 16.1 16.9 18.2 19.5 22.8 22.8 ...

summary(ds)
## date location min_temp max_temp
## Min.   :2007-11-01 Canberaan  :366 Min.   : 5.30 Min.   : 7.6
## 1st Qu.:2008-01-31 Adelaide    : 0 1st Qu.: 2.30 1st Qu.:15.0
## Median :2008-05-01 Albany      : 0 Median : 7.45 Median :19.6
## Mean   :2008-05-01 Albury       : 0 Mean   : 7.27 Mean   :20.6
```

Copyright © 2013-2014 Graham@togaware.com Module: BayesO Page: 2 of 6
3 Naive Bayes Model

Here we use `naiveBayes()` from `e1071` (Meyer et al., 2014).

```r
library(e1071)
model <- naiveBayes(form, data=ds[train, vars])
model
##
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x=X, y=Y, laplace=laplace)
##
## A-priori probabilities:
## Y
## No  Yes
## 0.8398 0.1602
##
## Conditional probabilities:
## min.temp
## Y [,1] [,2]
## No 6.34 5.958
## Yes 10.53 6.239
##
## max.temp
## Y [,1] [,2]
## No 19.94 6.730
## Yes 22.15 5.977
##
## rainfall
## Y [,1] [,2]
## No 1.233 3.788
## Yes 2.190 4.377
```
4 Naive Bayes Model Evaluation

Next we evaluate the model.

\[
\text{classes} \leftarrow \text{predict(model, ds[\text{test, vars}], type="class")}
\]

\[
\text{acc} \leftarrow \frac{\text{sum(classes == actual, na.rm=TRUE)}}{\text{length(actual)}}
\]

\[
\text{err} \leftarrow \frac{\text{sum(classes != actual, na.rm=TRUE)}}{\text{length(actual)}}
\]

\[
\text{predicted} \leftarrow \text{predict(model, ds[\text{test, vars}], type="raw")[,2]}
\]

\[
\text{pred} \leftarrow \text{prediction(predicted, ds[\text{test, target}])}
\]

\[
\text{ate} \leftarrow \text{attr(performance(pred, "auc"), "y.values")[[1]]}
\]

\[
\text{riskchart(predicted, actual, risks)}
\]

\[
\text{round(table(actual, classes, dnn=c("Actual", "Predicted"))/length(actual), 2)}
\]

```
## Predicted
## Actual No Yes
## No 0.67 0.10
## Yes 0.08 0.15
```
5 Further Reading

The Rattle Book, published by Springer, provides a comprehensive introduction to data mining and analytics using Rattle and R. It is available from Amazon. Other documentation on a broader selection of R topics of relevance to the data scientist is freely available from http://datamining.togaware.com, including the Datamining Desktop Survival Guide.

This module is one of many OnePageR modules available from http://onepager.togaware.com. In particular follow the links on the website with a * which indicates the generally more developed OnePageR modules.
6 References

