
Chapter 2

Coding with Style

20200105

Data scientists write programs to ingest, manage, wrangle, visualise, analyse, report on, data in
many ways, followed by training, evaluating, deploying and maintaining models. It is an art to
be able to communicate our explorations and understandings as data scientists, and of course
we do so through language. Whether that is a programming language or a natural language,
our focus needs to be on communication and an understanding of who we are communicating
to. Indeed it is this last point that is often misunderstood. We regularly �nd that most pro-
grammers spend most of their time reading other peoples programs and increasingly, people not
trained in software engineering are reading other people's programs. Programming languages
become the means of communicating between people.

We can be as creative and di�erently expressive and personal in using programming languages as
we are in using natural languages. Indeed, we can sometimes identify the authors of narratives
written in a particular programming language, just as we might identify a Shakespearean play
from a Noël Coward play.

Thus when we communicate with each other using programming languages, we must keep in
mind that it truly is a mechanism for communicating to other people.

Of course our programs must be executable by computers but computers generally care little
about our programs except that they be syntactically correct. So our focus should be on
engaging others to read and understand the narratives we present through our programs. A
badly written and presented program is not a pleasure to read. And to boot, it's not a pleasant
experience for the computer either, in the sense that where care is not taken, our narratives
will more like have bugs.

Please, aim to write programs that clearly and e�ectively communicate the story of our data
to others, no matter how short or long that program is. Think of the other. Have empathy for
those who need to read what you write.

In this chapter we present simple stylistic guidelines for programming in R that support and
encourage the transparency of our programs. Our programming style aims to ensure consistency
and ease our understanding whilst of course also encouraging correct programs for execution
by computer. Over time develop your own stylistic nuances and idiosyncrasies.

5



6 � Style Matters 2. Coding with Style

2.1 Style Matters 20200105

Programming is an art and a way to express ourselves. Often that expression is unique to us
individually. Just as we can often ascertain the author of a play or the artist of a painting
from their style we can often tell the programmer from the program coding structures and
styles.

As we write programs we should keep in mind that something like 90% of a programmers'
time (at least in business and government) is spent reading and modifying and extending other
programmers' code. We need to facilitate the task�so that others can quickly come to a clear
understanding of the narrative.

As data scientists we also practice this art of programming and indeed even more so to share the
narrative of what we discover through our living and breathing of data. Writing our programs
so that others understand why and how we analysed our data is crucial. Data science is so
much more than simply building black box models�we should be seeking to expose and share
the process and the knowledge that is discovered from the data.

Data scientists rarely begin a new project with an empty coding sheet. Regularly we take our
own or other's code as a starting point and begin from that. We �nd code on Stack Over�ow or
elsewhere on the Internet and modify it to suit our needs. We collect templates from other data
scientists and build from there, tuning the templates for our speci�c needs and datasets.

In being comfortable to share our code and narratives with others we often develop a style.
Our style is personal to us as we innovate and express ourselves and we need consistency in
how we do that. Often a style guide helps us as we journey through a new language and gives
us a foundation for developing, over time, our own style.

A style guide is also useful for sharing our tips and tricks for communicating clearly through
our programs�our expression of how to solve a problem or actually how we model the world.
We express this in the form of a language�a language that also happens to be executable by a
computer. In this language we follow precisely speci�ed syntax/grammar to develop sentences,
paragraphs, and whole stories. Whilst there is in�nite leeway in how we express ourselves
and we each express ourselves di�erently, we share a common set of principles as our style
guide.

The style guide here has evolved from over 30 years of programming and data experience.
Nonetheless we note that style changes over time. Change can be motivated by changes in
the technology itself and we should allow variation as we mature and learn and change our
views.

Irrespective of whether the speci�c style suggestions here suit you or not, when coding do aim
to communicate to other readers in the �rst instance. When we write programs we write for

others to easily read and to learn from and to build upon.

Copyright © 2000-2020 Graham.Williams@togaware.com https://onepager.togaware.com

https://stackoverflow.com/
https://onepager.togaware.com


2. Coding with Style Naming Files � 7

2.2 Naming Files 20201102

1. Files containing R code use the uppercase .R extension. This aligns with the fact that
the language is unambiguously called �R� and not �r.�

Preferred

power_analysis.R

Discouraged

power_analysis.r

2. Some �les may contain a single support function. Name the �le to match the name of the
function de�ned within the �le. If a �le contains the support function my_fancy_plot()

then name the �le as below to di�erentiate it from analysis scripts.

Preferred

my_fancy_plot.R

Discouraged

utility_functions.R

MyFancyPlot.R

my.fancy.plot.R

my_fancy_plot.r

3. R binary data �lenames end in �.RData�. This is descriptive of the �le containing data
for R and conforms to a capitalised naming scheme.

Preferred

weather.RData

Discouraged

weather.rdata

weather.Rdata

weather.rData

4. Standard �le names use lowercase where there is a choice.

Preferred

weather.csv

Discouraged

weather.CSV

https://onepager.togaware.com Copyright© 2000-2020 Graham.Williams@togaware.com

https://onepager.togaware.com


8 � Multiple File Scripts 2. Coding with Style

2.3 Multiple File Scripts 20200105

5. For multiple scripts associated with a project that have a processing order associated with
them use a simple two digit number pre�x scheme. Separating by 10's allows additional
script �les to be added into the sequence later.

Sometimes this can become a burden. Users �nd themselves reverting to a single script
�le for their code. It requires some judgement and discipline to modularise your code in
this way, and maybe some assistance too from the integrated development environment
being used.

Suggested

00_setup.R

10_ingest.R

20_observe.R

30_process.R

40_meta.R

50_save.R

60_classification.R

62_rpart.R

64_randomForest.R

66_xgboost.R

68_h20.R

70_regression.R

72_lm.R

74_rpart.R

76_mxnet.R

80_evaluate.R

90_deploy.R

99_all.R

Copyright © 2000-2020 Graham.Williams@togaware.com https://onepager.togaware.com

https://onepager.togaware.com


2. Coding with Style Naming Objects � 9

2.4 Naming Objects 20201102

6. Function names use underscores to separate verbs.

Preferred

display_plot_again()

Discouraged

DisplayPlotAgain()

displayplotagain()

display.plot.again()

7. Variable names use underscore separated nouns. A very common alternative is to use
a period in place of the underscore. However, the period is often used to identify class
hierarchies in R and the period has speci�c meanings in many database systems which
presents an issue when importing from and exporting to databases. See Section ?? to
rename variables automatically. Preferred

num_frames <- 10

Discouraged

num.frames <- 10

numframes <- 10

numFrames <- 10

https://onepager.togaware.com Copyright© 2000-2020 Graham.Williams@togaware.com

https://onepager.togaware.com


10 � Naming Functions 2. Coding with Style

2.5 Naming Functions 20201102

8. Function argument names use underscore separated nouns. Whilst function argument
names do not risk being confused with class hierarchies the use of period to separate the
nouns has become obsolete in the tidyverse world.

Preferred

build_cyc(num_frames=10)

Discouraged

build_cyc(num.frames=10)

build_cyc(numFrames=10)

9. Keep variable and function names shorter but self explanatory. A long variable or
function name is problematic with layout and similar names are hard to tell apart. Single
letter names like x and y are often used within functions and facilitate understanding,
particularly for mathematically oriented functions but should otherwise be avoided. l
Preferred

# Perform addition.

add_squares <- function(x, y)

{

return(x^2 + y^2)

}

Discouraged

# Perform addition.

add_squares <- function(first_argument, second_argument)

{

return(first_argument^2 + second_argument^2)

}

Copyright © 2000-2020 Graham.Williams@togaware.com https://onepager.togaware.com

https://onepager.togaware.com


2. Coding with Style Comments � 11

2.6 Comments 20200105

10. Use a single # to introduce ordinary comments and separate comments from code with
a single empty line before and after the comment. Comments should be full sentences
beginning with a capital and ending with a full stop.

Preferred

# How many locations are represented in the dataset.

ds$location %>% unique() %>% length()

# Identify variables that have a single value.

ds[vars] %>%

sapply(function(x) all(x == x[1L])) %>%

which() ->

constants

11. Sections might begin with all uppercase titles and subsections with initial capital titles.
The last four dashes at the end of the comment are a section marker supported by RStudio.
Other conventions are available for structuring a document and di�erent environments
support di�erent conventions.

Preferred

# DATA WRANGLING ----

# Normalise Variable Names ----

# Review the names of the dataset columns.

names(ds)

# Normalise variable names and confirm they are as expected.

ds %<>% dplyr::rename_all(rattle::normVarNames)

names(ds)

# Wrangle weatherAUS ----

# Convert the character variable 'date' to a Date data type.

class(ds$date)

ds$date %<>%

lubridate::ymd() %>%

as.Date() %T>%

{class(.); print()}

https://onepager.togaware.com Copyright© 2000-2020 Graham.Williams@togaware.com

https://onepager.togaware.com


12 � Layout 2. Coding with Style

2.7 Layout 20200105

12. Keep lines to less then 80 characters for easier reading and �tting on a printed page.

13. Align curly braces so that an opening curly brace is on a line by itself. This is at odds
with many style guides. My motivation is that the open and close curly braces belong
to each other more so than the closing curly brace belonging to the keyword (while in
the example). The extra white space helps to reduce code clutter. This style also makes
it easier to comment out, for example, just the line containing the while and still have
valid syntax. We tend not to need to foucs so much any more on reducing the number of
lines in our code so we can now avoid Egyptian brackets.

Preferred

while (blue_sky())

{

open_the_windows()

do_some_research()

}

retireForTheDay()

Alternative

while (blue_sky()) {

open_the_windows()

do_some_research()

}

retireForTheDay()

14. If a code block contains a single statement, then curly braces remain useful to emphasise
the limit of the code block; however, some prefer to drop them.

Preferred

while (blue_sky())

{

do_some_research()

}

retire_for_the_day()

Alternatives

while (blue_sky())

do_some_research()

retire_for_the_day()

while (blue_sky()) do_some_research()

retire_for_the_day()

Copyright © 2000-2020 Graham.Williams@togaware.com https://onepager.togaware.com

https://blog.codinghorror.com/new-programming-jargon/
https://onepager.togaware.com


2. Coding with Style If-Else Issue � 13

2.8 If-Else Issue 20200105

15. Try typing the following code into the R console.

if (TRUE)

{

seed <- 42

}

else

{

seed <- 666

}

After the �rst closing brace the interpreter identi�es and executes a syntactically valid
statement (if with no else). The following else is then a syntactic error.

Error: unexpected 'else' in "else"

> source("examples.R")

Error in source("examples.R") : tmp.R:5:1: unexpected 'else'

4: }

5: else

^

This is not an issue when embedding the if statement inside a block of code as within
curly braces since the text we enter is not parsed until we hit the �nal closing brace.

{

if (TRUE)

{

seed <- 42

}

else

{

seed <- 666

}

}

Another solution is to move the else to the line with the closing braces to inform the
interpreter that we have more to come:

if (TRUE)

{

seed <- 42

} else

{

seed <- 666

}

https://onepager.togaware.com Copyright© 2000-2020 Graham.Williams@togaware.com

https://onepager.togaware.com


14 � Indentation 2. Coding with Style

2.9 Indentation 20200105

16. Use a consistent indentation. I prefer 2 spaces within both Emacs ESS and RStudio

with a good font (e.g., Courier font in RStudio works well but Courier 10picth is too
compressed). Try 4 if using a smaller font. Indenting 8 characters is probably too much,
makes it di�cult to read. There are plenty of tools to reindent to a di�erent level as we
choose. Keep lines to less than 80 characters even though displays can now support much
longer lines. It seems easier to read.

Preferred

window_delete <- function(action, window)

{

if (action %in% c("quit", "ask"))

{

ans <- TRUE

msg <- "Terminate?"

if (! dialog(msg))

ans <- TRUE

else

if (action == "quit")

quit(save="no")

else

ans <- FALSE

}

return(ans)

}

Not Ideal

window_delete <- function(action, window)

{

if (action %in% c("quit", "ask"))

{

ans <- TRUE

msg <- "Terminate?"

if (! dialog(msg))

ans <- TRUE

else

if (action == "quit")

quit(save="no")

else

ans <- FALSE

}

return(ans)

}

17. Always use spaces rather than the invisible tab character.

Copyright © 2000-2020 Graham.Williams@togaware.com https://onepager.togaware.com

https://onepager.togaware.com


2. Coding with Style Alignment � 15

2.10 Alignment 20200105

18. Align the assignment operator for blocks of assignments. It is easier for us to read the
assignments in a tabular form than it is when it is jagged. This is akin to reading data
in tables�such data is much easier to read when it is aligned. Space is used to enhance
readability.

Preferred

a <- 42

another <- 666

b <- mean(x)

brother <- sum(x)/length(x)

Default

a <- 42

another <- 666

b <- mean(x)

brother <- sum(x)/length(x)

19. We might choose to align tidyr::%>% in pipelines and base::+ for ggplot2 (Wickham
et al., 2020) layers for a visual symmetry to avoid the operators being lost amongst the
text. This requires extra work and is not supported by editors and there is a risk the
operator too far to the right is overlooked on an inspection of the code.

Preferred

ds <- weatherAUS

names(ds) <- rattle::normVarNames(names(ds))

ds %>%

group_by(location) %>%

mutate(rainfall=cumsum(risk_mm)) %>%

ggplot(aes(date, rainfall)) +

geom_line() +

facet_wrap(~location) +

theme(axis.text.x=element_text(angle=90))

Alternative

ds <- weatherAUS

names(ds) <- rattle::normVarNames(names(ds))

ds %>%

group_by(location) %>%

mutate(rainfall=cumsum(risk_mm)) %>%

ggplot(aes(date, rainfall)) +

geom_line() +

facet_wrap(~location) +

theme(axis.text.x=element_text(angle=90))

https://onepager.togaware.com Copyright© 2000-2020 Graham.Williams@togaware.com

https://www.rdocumentation.org/packages/tidyr/topics/%>%
https://www.rdocumentation.org/packages/base/topics/+
https://onepager.togaware.com


16 � Sub-Block Alignment 2. Coding with Style

2.11 Sub-Block Alignment 20200105

20. An interesting variation on the alignment of pipelines including graphics layering is to
indent the graphics layering and include it within a code block (surrounded by curly
braces). This highlights the graphics layering as a di�erent type of concept to the data
pipeline and ensures the graphics layering stands out as a separate stanza to the pipeline
narrative. Note that a period is then required in the ggplot2::ggplot() call to access
the pipelined dataset. The pipeline can of course continue on from this expression block.
Here we show it being piped into a base::print() to have the plot displayed and then
saved into a variable for later processing. This style was suggested by Michael Thompson.

Preferred

ds <- weatherAUS

names(ds) <- rattle::normVarNames(names(ds))

ds %>%

group_by(location) %>%

mutate(rainfall=cumsum(risk_mm)) %>%

{

ggplot(., aes(date, rainfall)) +

geom_line() +

facet_wrap(~location) +

theme(axis.text.x=element_text(angle=90))

} %T>%

print() ->

plot_cum_rainfall_by_location

Copyright © 2000-2020 Graham.Williams@togaware.com https://onepager.togaware.com

https://www.rdocumentation.org/packages/ggplot2/topics/ggplot
https://www.rdocumentation.org/packages/base/topics/print
https://onepager.togaware.com


2. Coding with Style Function Guidelines � 17

2.12 Function Guidelines 20200105

21. Functions should be no longer than a screen or a page. Long functions generally suggest
the opportunity to consider more modular design. Take the opportunity to split the larger
function into smaller functions.

22. When referring to a function in text include the empty round brackets to make it clear it
is a function reference as in rpart().

23. Generally prefer a single base::return() from a function. Understanding a function
with multiple and nested returns can be di�cult. Sometimes though, particularly for
simple functions as in the alternative below, multiple returns work just �ne.

Preferred

factorial <- function(x)

{

if (x==1)

{

result <- 1

}

else

{

result <- x * factorial(x-1)

}

return(result)

}

Alternative

factorial <- function(x)

{

if (x==1)

{

return(1)

}

else

{

return(x * factorial(x-1))

}

}

https://onepager.togaware.com Copyright© 2000-2020 Graham.Williams@togaware.com

https://www.rdocumentation.org/packages/base/topics/return
https://onepager.togaware.com


18 � Function De�nition Layout 2. Coding with Style

2.13 Function De�nition Layout 20200105

24. Align function arguments in a function de�nition one per line. Aligning the = is also
recommended to make it easier to view what is going on by presenting the assignments
as a table.

Preferred

show_dial_plot <- function(label = "UseR!",

value = 78,

label_cex = 3,

label_color = "black")

{

...

}

Alternatives

show_dial_plot <- function(label="UseR!",

value=78,

label_cex=3,

label_color="black")

{

...

}

show_dial_plot <- function(

label="UseR!",

value=78,

label_cex=3,

label_color="black"

)

Discouraged

show_dial_plot <- function(label="UseR!", value=78,

label_cex=3,

label_color="black")

{

...

}

show_dial_plot <- function(label="UseR!",

value=78,

label_cex=3,

label_color="black")

Copyright © 2000-2020 Graham.Williams@togaware.com https://onepager.togaware.com

https://onepager.togaware.com


2. Coding with Style Function Call Layout � 19

2.14 Function Call Layout 20200105

25. Don't add spaces around = for named arguments in parameter lists. Visually this ties the
named arguments together and highlights this as a parameter list. This style is at odds
with the default R printing style and is the only situation where I tightly couple a binary
operator. In all other situations there should be a space around the operator.

Preferred

readr::read_csv(file="data.csv", skip=1e5, progress=FALSE)

Discouraged

read_csv(file = "data.csv", skip =

1e5, progress

= FALSE)

26. For long parameter lists improve readability using a table format aligning on the =.

Preferred

readr::read_csv(file = "data.csv",

skip = 1e5,

progress = FALSE)

27. All but the �nal argument to a function call can be easily commented out. However,
the latter arguments are often optional and whilst exploring them we will likely comment
them out. An alternative puts the comma at the beginning of the line to easily comment
out speci�c arguments except for the �rst one, which is usually more important and often
non-optional. This is common amongst SQL programmers and can be useful for R.

Usual

dialPlot(value = 78,

label = "UseR!",

label_cex = 3,

label_color = "black")

Alternative

dialPlot(value = 78

, label = "UseR!"

, label_cex = 3

, label_color = "black"

)

Discouraged

dialPlot( value=78, label="UseR!",

label_cex=3, label_color="black")

https://onepager.togaware.com Copyright© 2000-2020 Graham.Williams@togaware.com

https://onepager.togaware.com


20 � Functions from Packages 2. Coding with Style

2.15 Functions from Packages 20200105

28. R has a mechanism (called namespaces) for identifying the names of functions and vari-
ables from speci�c packages. There is no rule that says a package provided by one author
can not use a function name already used by another package or by base R. Thus, func-
tions from one package might overwrite the de�nition of a function with the same name
from another package or from base R itself. A mechanism to ensure we are using the
correct function is to pre�x the function call with the name of the package providing the
function, just like dplyr::mutate().

Generally in commentary we will use this notation to clearly identify the package which
provides the function. In our interactive R usage and in scripts we tend not to use the
namespace notation. It can clutter the code and arguably reduce its readability even
though there is the bene�t of clearly identifying where the function comes from.

For common packages we tend not to use namespaces but for less well-known packages
a namespace at least on �rst usage provides valuable information. Also, when a package
provides a function that has the same name as a function in another namespace, it is
useful to explicitly supply the namespace pre�x.

Preferred

library(dplyr) # Data wranlging, mutate().

library(lubridate) # Dates and time, ymd_hm().

library(ggplot2) # Visualize data.

ds <- get(dsname) %>%

mutate(timestamp=ymd_hm(paste(date, time))) %>%

ggplot(aes(timestamp, measure)) +

geom_line() +

geom_smooth()

Alternative

The use of the namespace pre�x increases the verbosity of the presentation and that has
a negative impact on the readability of the code. However it makes it very clear where
each function comes from.

ds <- get(dsname) %>%

dplyr::mutate(timestamp=

lubridate::ymd_hm(paste(date, time))) %>%

ggplot2::ggplot(ggplot2::aes(timestamp, measure)) +

ggplot2::geom_line() +

ggplot2::geom_smooth()

Copyright © 2000-2020 Graham.Williams@togaware.com https://onepager.togaware.com

https://www.rdocumentation.org/packages/dplyr/topics/mutate
https://onepager.togaware.com


2. Coding with Style Assignment � 21

2.16 Assignment 20200105

29. Avoid using base::= for assignment. It was introduced in S-Plus in the late 1990s as
a convenience but is ambiguous (named arguments in functions, mathematical concept
of equality). The traditional backward assignment operator base::<- implies a �ow of
data and for readability is explicit about the intention.

Preferred

a <- 42

b <- mean(x)

Discouraged

a = 42

b = mean(x)

30. The forward assignment base::-> should generally be avoided. A single use case justi�es
it in pipelines where logically we do an assignment at the end of a long sequence of
operations. As a side e�ect operator it is vitally important to highlight the assigned
variable whenever possible and so out-denting the variable after the forward assignment
to highlight it is recommended.

Preferred

ds[vars] %>%

sapply(function(x) all(x == x[1L])) %>%

which() %>%

names() %T>%

print() ->

constants

Traditional

constants <-

ds[vars] %>%

sapply(function(x) all(x == x[1L])) %>%

which() %>%

names() %T>%

print()

Discouraged

ds[vars] %>%

sapply(function(x) all(x == x[1L])) %>%

which() %>%

names() %T>%

print() ->

constants

https://onepager.togaware.com Copyright© 2000-2020 Graham.Williams@togaware.com

https://www.rdocumentation.org/packages/base/topics/=
https://www.rdocumentation.org/packages/base/topics/<-
https://www.rdocumentation.org/packages/base/topics/->
https://onepager.togaware.com


22 � Miscellaneous 2. Coding with Style

2.17 Miscellaneous 20200105

31. Do not use the semicolon to terminate a statement unless it makes a lot of sense to have
multiple statements on one line. Line breaks in R make the semicolon optional.

Preferred

threshold <- 0.7

maximum <- 1.5

minimum <- 0.1

Alternative

threshold <- 0.7; maximum <- 1.5; minimum <- 0.1

Discouraged

threshold <- 0.7;

maximum <- 1.5;

minimum <- 0.1;

32. Do not abbreviate TRUE and FALSE to T and F.

Preferred

is_windows <- FALSE

open_source <- TRUE

Discouraged

is_windows <- F

open_source <- T

33. Separate parameters in a function call with a comma followed by a space.

Preferred

dialPlot(value=78, label="UseR!", dial_radius=1)

Dicouraged

dialPlot(value=78,label="UseR!",dial_radius=1)

Copyright © 2000-2020 Graham.Williams@togaware.com https://onepager.togaware.com

https://onepager.togaware.com


2. Coding with Style Good Practise � 23

2.18 Good Practise 20200105

34. Ensure that �les are under version control such as with gitlab, github or bitbucket. Version
control systems support the recovery of previous versions of the �le, to always be able to
go back to a previous working version of the software, for example. Also these software
development repositories support multiple people working on the same project. They
also facilitate sharing of the software more broadly, contributing back to the community
from which we are all bene�ting. If the material is not public then the repositories can
be marked as private, or as open source software, gitlab can be installed on your own
internal server.

https://onepager.togaware.com Copyright© 2000-2020 Graham.Williams@togaware.com

https://gitlab.com
https://github.com/
https://bitbucket.org
https://gitlab.com
https://onepager.togaware.com


24 � Style Resources 2. Coding with Style

2.19 Style Resources 20200105

There are many style guides available and the guidelines here are generally consistent and over-
lap considerably with many others. In this chapter I aim to capture the motivation for each
choice. My style choices are based on over 30 years of programming in very many di�erent
languages. Some elements of style are personal preference and others have very solid founda-
tions. Unfortunately in reading some style guides the choices made are not always explained
and without the motivation we do not really have a basis to choose or to debate.

The canonical style guide for the tidyverse is Hadley Wickham's style guide at https://style.
tidyverse.org/. Other guidelines can be found at Google and Hadley Wickham's older guide
and Colin Gillespie. These are similar though with idiosyncratic di�erences. Also see Wikipedia
for an excellent summary of many styles.

Rasmus Bååth, in The State of Naming Conventions in R, reviews naming conventions used
in R, �nding that the initial lower case capitalised word scheme for functions was the most
popular, and dot separated names for arguments similarly. We are however seeing a migration
away from the dot in variable names as it is also used as a class separator for object oriented
coding. Using the underscore is now preferred.

Copyright © 2000-2020 Graham.Williams@togaware.com https://onepager.togaware.com

https://style.tidyverse.org/
https://style.tidyverse.org/
https://google.github.io/styleguide/Rguide.xml
http://adv-r.had.co.nz/Style.html
https://csgillespie.wordpress.com/2010/11/23/r-style-guide/
http://en.wikipedia.org/wiki/Indent_style
http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf
https://onepager.togaware.com


Chapter 3

Resources

The Rattle book (Williams, 2011), published by Springer, provides
a comprehensive introduction to data mining and analytics using
Rattle and R. It is available from Amazon. Rattle provides a graph-
ical user interface through which the user is able to load, explore,
visualise, and transform data, and to build, evaluate, and export
models. Through its Log tab it speci�cally aims to provide an R

template which can be exported and serve as the starting point for
further programming with data in R.

The Essentials of Data Science book (Williams, 2017), published
by CRC Press, provides a comprehensive introduction to data sci-
ence through programming with data using R. It is available from
Amazon. The book provides a template based approach to do-
ing data science and knowledge discovery. Templates are pro-
vided for data wrangling and model building. These serve as
generic starting points for programming with data, and are de-
signed to require minimal e�ort to get started. Visit https:

//essentials.togaware.com for further guides and templates.

25

https://bit.ly/rattle_data_mining
https://bit.ly/essentials_data_science
https://bit.ly/rattle_data_mining
https://bit.ly/rattle_data_mining
https://essentials.togaware.com
https://essentials.togaware.com

	pbs@ARFix@11: 
	pbs@ARFix@12: 
	pbs@ARFix@13: 
	pbs@ARFix@14: 
	pbs@ARFix@15: 
	pbs@ARFix@16: 
	pbs@ARFix@17: 
	pbs@ARFix@18: 
	pbs@ARFix@19: 
	pbs@ARFix@20: 
	pbs@ARFix@21: 
	pbs@ARFix@22: 
	pbs@ARFix@23: 
	pbs@ARFix@24: 
	pbs@ARFix@25: 
	pbs@ARFix@26: 
	pbs@ARFix@27: 
	pbs@ARFix@28: 
	pbs@ARFix@29: 
	pbs@ARFix@30: 
	pbs@ARFix@31: 


